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Quantum and classical fidelities
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We examine the physical significance of fidelity as a measure of similarity for Gaussian states by drawing a
comparison with its classical counterpart. We find that the relationship between these classical and quantum
fidelities is not straightforward, and in general does not seem to provide insight into the physical significance
of quantum fidelity. To avoid this ambiguity we propose that the efficacy of quantum information protocols be
characterized by determining their transfer function and then calculating the fidelity achievable for a hypo-
thetical pure reference input state. © 2007 Optical Society of America

OCIS codes: 270.0270, 350.4800.
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. INTRODUCTION
uantification of the similarity (or distinguishability) of
uantum states is a crucial issue in quantum information
heory.1 Quantum fidelity2—previously known as Uhl-
ann’s transition probability3—is probably the most well

nown such quantification technique, and is an important
ool for assessing the efficacy of quantum information
ransfer.4 Critical to any technique used to characterize
imilarity is a robust understanding of its physical signifi-
ance. To date, although there have been efforts to impose
n operational interpretation on quantum fidelity for
ixed states5 and to compare it with alternative distance
easures,6,7 a strong and general physical significance

as yet to be found. When one of the states involved is
ure, it is well known that quantum fidelity is equal to
he transition probability from one state to the other. Fur-
hermore, Uhlmann’s theorem allows the quantum fidel-
ty between two arbitrary states to be translated to a fi-
elity between higher-dimensional pure states, which can
hen be interpreted as a transition probability between
hose higher-dimensional states.3 However, the strength
f the link between these hypothetical higher-
imensional states and the actual states under investiga-
ion is not obvious. In this paper we seek to establish the
hysical significance of quantum fidelity for a particular
lass of states, those of a Gaussian nature.

Gaussian states are extremely useful tools in many
uantum optics experiments. For example, several quan-
um communication experiments have now been per-
ormed using only Gaussian states.8–12 Typically the for-
ulas used to calculate the quantum fidelity achieved by

hese experiments assume that the input states are pure
oherent states.8–12 There have been many studies of
uantum fidelity as a successful criteria for quantum tele-
ortation of coherent states,4,13–15 and its value in this re-
0740-3224/07/020355-8/$15.00 © 2
ime is well understood. However, the unknown quantum
tates supplied by a third party called “Victor” in real ex-
eriments are not perfectly pure, and typically have some
mall but nonnegligible level of mixedness. It is impor-
ant to understand both the effect of this mixedness on
he quantum fidelity achieved by experiments and the
ignificance of the resulting fidelity results, which turn
ut to be markedly different from those expected for a co-
erent state even for extremely small levels of mixedness.
ence the motivation for this paper.
Quantum fidelity is a direct extension of the fidelity be-

ween a pair of classical probability distributions, termed
ere classical fidelity, which is used in statistics to char-
cterize their similarity. For Gaussian states, in particu-
ar, this relationship is interesting, since the Wigner func-
ion describing such states is nonnegative and can be
hought of, to some degree, as a classical probability dis-
ribution, which we shall discuss more rigorously in this
aper. It might then be expected that the quantum and
lassical fidelities would coincide for Gaussian states, and
hus a robust physical significance could be established
or quantum fidelity. The results reported here show, how-
ver, that this is not the case.

In this paper, we compare and contrast quantum and
lassical fidelities as quantum–classical counterparts.
he explicit forms of the quantum fidelities between two
aussian states are obtained for various cases. We also
oint out that the classical fidelity between two Gaussian
tates inferred by the complementary measurements ex-
ctly corresponds to the overlap between their Wigner
unctions. Then, although the quantum and classical fi-
elities do coincide in the classical limit, i.e., in the limit
f the extreme mixedness, we show that no simple rela-
ionship could be established for nonmaximally mixed
aussian states. The mixedness, squeezing, and separa-
007 Optical Society of America
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ion of the Gaussian states involved each effect the dis-
repancy between classical and quantum fidelity in en-
irely different manners.

The unclear physical significance of quantum fidelity
etween mixed states raises questions about its useful-
ess as a measure of the efficacy of quantum information
rotocols. We propose a new characterization method to
void this issue. In this method, the transfer function of
he quantum information protocol is determined and used
o characterize the quantum fidelity achievable for an ar-
itrary pure input state. This method has two advan-
ages: (1) it provides a standard benchmark through
hich to compare different experiments; and (2) the input

tate can be chosen to ensure that one of the states used
o determine the quantum fidelity is pure, yielding a
hysically significant fidelity, which represents the tran-
ition probability from one state to the other.

. MOTIVATION
s we have noted in Section 1, the unknown quantum
tates used in real continuous-variable quantum telepor-
ation experiments8–11 are not exactly pure states but
ave some small level of mixedness. In most experiments,
he input states have been assumed pure in assessing the
fficacy of the quantum information protocols without jus-
ification (we shall further clarify and discuss this point
n Section 4). A natural question here is, how sensitive is
delity to small levels of mixedness? It is generally as-
umed that the small level of mixedness involved will not
ignificantly change the fidelity between the input and
utput states. However, as we will see here, in general
his turns out not to be the case.

Let us consider the no-entanglement fidelity limit for
nity gain quantum teleportation of coherent states. This

s generally accepted to be given by a protocol in which
lice makes an ideal heterodyne measurement of the un-
nown state, thus obtaining an estimate of its coherent
mplitude �, and then passes the measurement result to
ob who displaces a local vacuum mode by this estimated
alue.8 Bob’s state then has the same average coherent
mplitude as the unknown state, but its variance is in-
reased by two units of vacuum noise. If the input state is
pure coherent state, then the no-entanglement fidelity

s Fne=0.5. Both the fidelity of quantum teleportation and
he no-entanglement fidelity limit depend on the class of
nput states used. The degradation of fidelity in no-
ntanglement quantum teleportation is a result of noise
ntroduced to the output state during the measurement
nd reconstruction processes. In the case when the input
tates are pure, this noise causes a significant change to
he Wigner function describing the output state, with the
esult of poor overlap, fidelity, between the input and out-
ut states. However, as the input states become more and
ore thermal, and hence their breadths become larger,

he noise plays a smaller role in the overlap between in-
ut and output states. In the limit that the magnitude of
oise introduced is insignificant compared to the breadth
f the input state, the overlap between the input and out-
ut states, and hence the no-entanglement fidelity limit,
pproaches unity. Our question in this section is how
apid this transition from 0.5 to 1 is as the input states
ecome thermalized.
A general expression for the fidelity in this situation
an easily be obtained by invoking Uhlmann’s theorem.3

t states that if �1=Tra���1���1�� and �2=Tra���2���2��,
here ��1� and ��2� are pure two-mode states and the par-

ial traces are taken only over one of the modes, then the
delity of �1 with respect to �2 is given by

F�1,�2
=�1,2

max���2 � �1��2, �1�

here the maximization is over all pure states that have
he required reduced density operators. In our case, the
educed density operators must be those describing the
nput and output states, both of which are isotropically

ixed coherent states. Here we limit our analysis to unity
ain teleportation, in which case the average coherent
mplitudes of the input and output states are equal. We
an then choose �1=�2=0 without loss of generality, and
he input and output states then become thermal. In gen-
ral, to calculate the fidelity between input and output
tates we must then maximize the fidelity over all higher-
imensional states that have reduced density operators
escribing the required thermal states. However, it is well
nown that the partial trace over a two-mode squeezed
tate, given by

��i� =
1

Gi
	

n

 �Gi − 1�

Gi
�n/2

�n�a�n�b, �2�

here Gi�1 is the strength of the squeezing, results in a
hermal state.16 From symmetry it is clear that such a
hoice will maximize the fidelity as required. Thus the fi-
elity between two thermal states is given by

F = ���1 � �2��2 =
1

G1G2
�	

n

 �G1 − 1��G2 − 1�

G1G2
�n/2
2

= 
 1

�G1G2 − ��G1 − 1��G2 − 1��2

= 
 2

��V1 + 1��V2 + 1� − ��V1 − 1��V2 − 1��2

, �3�

here Vi=2Gi−1 is the variance of the single-mode ther-
al state obtained by the partial trace of the correspond-

ng two-mode squeezed state.
We are now in a position to calculate the no-

ntanglement fidelity limit for teleportation of an isotro-
ically mixed coherent state. Using Eq. (3) and the fact
hat the ideal heterodyne protocol discussed above adds
wo units of vacuum noise to the output, we obtain

Fne = 
 2

��V + 1��V + 3� − ��V − 1��V + 1��2

. �4�

his expression is graphed as a function of the input vari-
nce V�1 in Fig. 1. Notice that we recover Fne=0.5 at V
1, i.e., a pure coherent state, but that the fidelity is very
ensitive to small amounts of mixedness. For example, for
% mixedness, i.e., V=1.02, a typical level of experimen-
al purity, we have Fne=0.57, a 14% increase in the clas-
ical limit. We see, therefore, that to ensure accurate fi-
elity results, it is critical that the analysis of quantum
eleportation experiments takes into account the mixed-
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ess of the input state. Just as important as achieving an
ccurate fidelity result is to understand the actual signifi-
ance of the result. One way of doing this is to consider
he analogous classical system. The comparison of quan-
um and classical fidelities is the topic of Section 3, and
he classical fidelity [see Eq. (11)] between probability dis-
ibutions equivalent to the Wigner functions of the tele-
orter input and output states is also plotted in Fig. 1.
otice that for low levels of mixedness the classical and
uantum fidelities are in stark constrast, but as the mix-
dness increases they asymptote to the same value.

. COMPARISON BETWEEN QUANTUM AND
LASSICAL FIDELITIES FOR GAUSSIAN
ISTRIBUTIONS
. General Expressions for Fidelities of Gaussian States
lassical fidelity Fc and quantum fidelity Fq are defined
s1

Fc�P1,P2� = 
� d2��P1���P2����2

, �5�

Fq��1,�2� = �Tr����1�2��1��2, �6�

here P1 and P2 are probability distributions, and �1 and
2 are density matrices. These density matrices can be
quivalently represented as quasi-probability distribu-
ions, such as the Wigner function. The Wigner function of
general Gaussian state is

W��� =
2

��V+V−
exp
−

2

V+ ��r cos � + �i sin � − �r�2

−
2

V− ��i cos � − �r sin � − �i�2� , �7�

here V+= ��X����2, V−= ��P����2, X̂���= �e−i�â+ei�â†� /2,
nd P̂���=−i�e−i�â−ei�â†� /2. Note that the variances V±

re directly measurable values in experiments. Equation
7) becomes a coherent state of amplitude ��=�r+ i�i� when
+=V−=1. Here the breadth of the distribution is quanti-
ed by the product V+V−. For quantum states this corre-
ponds directly to the mixedness of the state, where
+V−=1 for a pure state and V+V−→	 as the mixedness

ncreases. The level of squeezing of a Gaussian state is de-

ig. 1. Fidelity limit Fne for quantum teleportation without en-
anglement against the variance V of an isotropically mixed-
tate input (solid curve) and the corresponding classical fidelity
dashed curve).
ermined by the squeezing parameter r:

r =
1

4
ei� ln
V−

V+� . �8�

e will compare two Gaussian distributions labeled by
he subscripts 1 and 2. These Gaussian distributions cor-
espond to Wigner functions for quantum fidelity and to
robability distributions for classical fidelity.
Suppose an ensemble of a Gaussian quantum state �.

ne can measure X̂��̃� many times while varying the
ngle �̃ to find the squeezed angle �. Furthermore, the ac-
umulated measurement results for X̂��� and P̂��� will re-
ult in the Gaussian probability distributions P��r�� and
��i��, where

�r� = �r cos � + �i sin �, �9�

�i� = �i cos � − �r sin �, �10�

ith variances V+ and V−. A classical probability distribu-
ion P���� for �r and �i constructed from P��r�� and P��i��
ill be identical to the Wigner function W��� in Eq. (7),
hich can also be represented by W���� with the rotated
ariable ��. In other words, if one infers the two-
imensional classical probability distribution from the re-
etitive complementary measurements on the ensemble
f the Gaussian quantum state �, it will be exactly the
ame as the Wigner function of state �. Therefore, the
igner functions should be used to calculate the classical

delity for Gaussian states. It should be noted that other
uasi-probability distributions such as the P function or
function cannot be used for this purpose. Of course, this

pproach cannot be generally applied to non-Gaussian
tates that may have negativity in the Wigner functions.

similar treatment can be found in a recent study,17

here the author showed that a good estimate of the fi-
elity of a quantum process can be obtained by measuring
he outputs for only two complementary sets of input
tates. In short, the Wigner function of a Gaussian state
s a good analogy of the classical probability distribution
n the phase space, and Eq. (5) with the Wigner functions
an be a reasonable measure of the classical similarity of
wo Gaussian states. On the other hand, it is nontrivial to
epresent quantum fidelity between mixed states in terms
f their Wigner functions. However, when one of the
tates is pure, quantum fidelity in Eq. (6) can be ex-
ressed in terms of the Wigner functions as Fq��1 ,�2�
��d2�W1���W2���.18–20 It is interesting to note that this

ormula is obviously different from classical fidelity in Eq.
5).

Let us first consider the case where �1=�2, i.e., the two
aussian distributions have the same center. If we inter-
ret the Wigner function [Eq. (7)] as a probability distri-
ution, the classical fidelity between the Gaussian distri-
utions P1��� and P2��� is straightforwardly obtained by
q. (5) as

Fc = 4�V1
+V1

−V2
+V2

−�cos2 
�V1
+ + V2

+��V1
− + V2

−�

+ sin2 
�V1
+ + V2

−��V1
− + V2

+��−1, �11�

here 
=� −� is the angle between the Gaussian dis-
2 1
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ributions (see Fig. 2). The quantum fidelity between
aussian states has been studied by several authors in
revious work and some useful analytical expressions
ave been found.21–24 It is possible to transform their for-
ulas into more experimentally useful forms in terms of

1,2
± and 
. The quantum fidelity is found to be (see Ap-
endix A)

Fq =
2

�4�V1
+V2

+V1
−V2

−/Fc + K − �K
, �12�

here K= �V1
+V1

−−1��V2
+V2

−−1�. For most of the cases con-
idered in this paper, the angle 
 is zero; in this case the
lassical and quantum fidelities are

Fc�
 = 0� =
4�V1

+V1
−V2

+V2
−

�V1
+ + V2

+��V1
− + V2

−�
, �13�

Fq�
 = 0� = 2���V1
+V2

− + 1��V1
−V2

+ + 1� − �K�−1.

�14�

ven simpler formulas result when the amplitude and
hase quadratures are symmetric (V1

+=V1
−=V1 and V2

+

V2
−=V2); in this case,

Fc�V1,V2� =
4V1V2

�V1 + V2�2 , �15�

Fq�V1,V2� = 2�V1V2 + 1

− ��V1
2 − 1��V2

2 − 1��−1, �16�

here Eqs. (16) and (3) are identical.
In general, the two states can be separated by some dis-

ance x=xr+ ixi=�2−�1 in phase space. This separation
an be shown to have the following straightforward effect
see Appendix A):

Fq�x� = Fq�
 = 0�D�x�,

D�x� = exp
−
2xr

2

V1
+ + V2

+ −
2x1

2

V1
− + V2

−� . �17�

his dependence on distance turns out to be exactly the
ame as one obtains for classical fidelity,

Fc�x� = Fc�
 = 0�D�x�, �18�

nd we therefore consider the separation in phase space
o further here.

ig. 2. Schematic of two arbitrary Gaussian distributions P1
nd P .
2
. �1 or �2 Pure
et us first compare Fc and Fq from Eqs. (11) and (12)
hen one of the states is pure. In this case, a simple re-

ationship can be drawn between the quantum and clas-
ical fidelities:

Fq
2 =

Fc

�V2
+V2

−
. �19�

ere, as in all following cases, when comparing classical
nd quantum fidelities the properties of distribution 1 are
xed while those of distribution 2 are varied. The quan-
um and classical fidelities between two distributions
ith V1

+=2, V1
−=1/2, V2

+V2
−=1, and 
=0 are compared in

ig. 3(a). For quantum fidelity, this condition corresponds
o two pure quantum states, one of which has a varying
egree of squeezing while the other has a fixed squeezing
arameter of r=−0.347. We see that classical fidelity de-
rades faster than quantum fidelity. This result can be ob-
ained straightforwardly from Eq. (19). We see that when

2
+V2

−=1, Fc=Fq
2; remembering the bound on fidelity 0

�Fc ,Fq��1, it is clear that Fc�Fq.
Let us now consider the quantum and classical fideli-

ies between a pure squeezed state and a mixed state with
he same squeezing parameter. Results for the param-
ters V1

+=2, V1
−=1/2, V2

+/V2
−=4, r=−0.347, and 
=0 are

hown in Fig. 3(b). We see that the quantum fidelity de-
rades faster than the classical fidelity as the difference
n the mixedness of the two states increases. This trend
irectly contrasts with that obtained in Fig. 3(a) as the
iscrepancy in the squeezing parameters of the two states
ncreases.

ig. 3. Quantum (solid curves) and classical (dashed curves) fi-
elities F between two Gaussian distributions. (a) Both distribu-
ions are pure, V1

+=2, V1
−=1/2, V2

+V2
−=1, and 
=0. (b) One distri-

ution is pure, and the other is mixed but with the same
queezing parameter V1

+=2, V1
−=1/2, V2

+ /V2
−=4, and 
=0.
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Figure 3(b) seems to reflect the difference between
uantum and classical distributions with respect to mix-
dness. Since a classical ensemble consists simply of a
ixture of classical states each weighted by the distribu-

ion function, it is essentially entirely mixed regardless of
he breadth of the distribution. A quantum state, how-
ver, is perfectly pure if the breadth is unity �V+V−=1�
nd the mixedness increases as V+V−→	. So, increasing
he breadth of the distribution has a secondary effect for
uantum states, which is not present for classical distri-
utions. It is reasonable, then, that differences in breadth
ause a greater reduction in the similarity (and hence fi-
elity) of quantum states than that of their classical coun-
erparts under the same conditions.

. �1 and �2 Mixed
s we have explained in Section 2, it may not be accept-
ble to simply assume that the input state is pure in real
eleportation experiments, since the quantum fidelity can
e extremely sensitive to even small amounts of mixed-
ess. For example, the quantum fidelity between a coher-
nt state of V1=1 and a thermal state of V2=2 is F
0.667, whereas for thermal states with V1=1.05 and

2=2 (V1=1.01 and V2=2) it is F�0.785 �F�0.721�. If a
ure input state was assumed for the latter cases, the fi-
elity would be only F�0.667, a significant underestima-
ion.

In Fig. 4 the breadths of the distributions are four
imes larger than those for the previous case (Fig. 3),
hile all other conditions are the same. The same trends
s those in Fig. 3 are observed, but the differences be-
ween quantum and classical fidelities are smaller. In
ther words, the discrepancy between quantum and clas-

ig. 4. Quantum (solid curves) and classical (dashed curves) fi-
elities between Gaussian distributions. (a) V1

+=4, V1
−=1, V2

+V2
−

4, and 
=0. (b) V1
+=4, V1

−=1, V2
+ /V2

−=4, and 
=0. The breadths
f the Gaussian distributions are four times larger than those in
ig. 3.
ical fidelity is reduced as the breadth �V+V−� of the
aussian distributions increases. The two fidelities be-

ome identical as V1
+V1

−→	 and V2
+V2

−→	. Since in this
imit the quantum states can be treated as classical ob-
ects, we see that the classical limit of quantum fidelity is
lassical fidelity as expected.

As a final example, let us consider the effect of rotating
ne distribution in phase space. Suppose the two Gauss-
an distributions have the same absolute squeezing pa-
ameter (V1

+/V1
−=V2

+/V2
−=16, �r�=0.693), but different

readths �V1
+V1

−=V2
+V2

−/4=1�, and are initially aligned �

0�. In this case, as was seen previously, the difference in
readth causes the classical fidelity to be greater than the
uantum fidelity [similar to Fig. 3(b)]. However, if one be-
ins to change the relative angle 
 between the distribu-
ions, the squeezing parameters r1 and r2 of the distribu-
ions become different. At a certain point, this difference
ay become more dominant than the difference in

readth [similar to Fig. 3(a)]. Thus the difference between
uantum and classical fidelities gets smaller and eventu-
lly classical fidelity becomes greater as shown in Fig. 5.
In this section, we have considered several different
anipulations of Gaussian states and shown that quan-

um and classical fidelities respond in qualitatively differ-
nt manners to these manipulations. It is clear, therefore,
hat classical fidelity cannot be used, in general, to estab-
ish a strong physical significance for quantum fidelity. As

entioned previously, there is a clear physical signifi-
ance if one of the states involved is pure. In Section 4 we
ropose a characterization technique that takes advan-
age of this fact to establish a physical significance for the
delity of general quantum information protocols.

. FIDELITY FOR QUANTUM
NFORMATION PROTOCOLS
ne of the most common applications of quantum fidelity

s to measure the efficacy of quantum information
rotocols.1 Typically, to characterize such protocols one
egins with an ensemble of identical known input states.
he protocol is then performed on each input state, yield-

ng an ensemble of (hopefully identical) output states.
hese states can be fully characterized by performing to-
ographic measurements. The desired output state (the

utput state that would be achieved if the protocol ran

ig. 5. Quantum (solid curve) and classical (dashed curve) fi-
elities for two Gaussian distributions having the same absolute
queezing parameter V1

+ /V1
−=V2

+ /V2
−=16 ��r�=0.693�, yet different

readths V1
+V1

−=V2
+V2

− /4=1. The quantum and classical fidelities
ary differently with the relative angle.
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erfectly) from the protocol is typically well known. For
xample, in unity gain quantum teleportation it would
imply be the input state. The fidelity between this de-
ired output state and the actual output state can then be
irectly calculated and is used to judge the efficacy of the
rotocol. However, we have seen that fidelity is highly
ensitive to both squeezing of and impurity in the states
eing compared. Furthermore, when both states are im-
ure, it is difficult to attribute anything more than a weak
hysical significance to fidelity. Since in any realistic ex-
eriment all states involved (except perhaps vacuum
tates) will be at least somewhat impure, the usefulness
f fidelity per se as a measure of the efficacy of quantum
nformation protocols is questionable. Furthermore, since
he fidelity of a quantum information protocol depends
trongly on the properties of the input state, care must be
aken when using fidelity to make comparisons between
ven very similar experiments.

At this point one would be forgiven for contemplating
ejecting fidelity entirely as an efficacy measure. How-
ver, it does have one attractive feature: When at least
ne of the states involved is pure, it is simply the transi-
ion probability between the two states. In other words, if
ne were to make a projective measurement on the output
tate, fidelity is the probability that it would collapse into
he desired output state. An alternative technique, that
e advocate here, is to characterize the transfer function
f the quantum information protocol. In general, this will
nvolve characterizing the function that maps the Wigner
unction of the input state to that of the output state.
iven particular experimental conditions and available

nput states, this can be achieved to the same particular
recision. The fidelity for any arbitrary input state can
hen be calculated simply by applying the transfer func-
ion and then comparing the resulting predicted output
tate to the desired output state. The fidelity for some ref-
rence input state, which can be chosen arbitrarily, can
hen be calculated. Fidelity calculated in this way has the
ollowing advantages: (1) Since a pure input state can be
hosen, the desired output state from the protocol will
lso often be pure;25 the fidelity obtained then has physi-
al significance as the transition probability between the
esired and predicted output states. (2) Since the same
eference input state can be used for all experimental
mplementations of quantum information protocols, this
delity can be used as a benchmark to compare efficacies.
Let us consider, for example, how this process would

ork for unity gain continuous-variable quantum telepor-
ation. As mentioned above, the desired output for unity
ain continuous-variable quantum teleportation is the in-
ut state. However, as a result of imperfect entanglement
nd technical noise sources, the actual output state will
e somewhat degraded. This effect is quantified by the
ransfer function of the system (if defined by the gain of
he process, which due to experimental imperfections, it
ill not be exactly unity9,10) and the additional noise
resent on the output state over and above the noise
resent on the input state. In general the additional noise
s non-Gaussian, and tomographic techniques are re-
uired for a full characterization; however, when Gauss-
an entanglement is used and all other noise sources are
aussian, only the variance of the noise is required.9,10,26
his is the case for all continuous-variable teleportation
xperiments to date.8–11 Once the gain and noise variance
ave been determined, an arbitrary reference input state
an be chosen and the corresponding output state calcu-
ated. A sensible choice of reference input state in this
ase would be a coherent state, since the classical fidelity
imit for teleportation is normally quoted for coherent
tates. The fidelity between this reference coherent state
nd the output state can be directly calculated and used
o compare different teleportation experiments. As we
aw in Fig. 1, if this transfer function and reference state
echnique is not used to characterize teleportation experi-
ents, the fidelities quoted by different experiments will

ary significantly based on variations in the mixedness of
he input states. This variation has no bearing on the
trength of entanglement used in the experiment, or the
fficacy of the protocol. Note that in most teleportation ex-
eriments to date it has simply been assumed that their
nput states were pure without justification. For small
evels of mixedness, this is approximately (but not ex-
ctly) equivalent to what we suggest here.
For a specific example, we compare two unity gain tele-

ortation experiments, each performed in exactly the
ame manner, and each with identical entanglement re-
ources. Let us say, for argument’s sake, that the en-
anglement is generated by interfering two squeezed
eams (labeled here with subscripts a and b, respectively)
ith variances Va

+=Vb
−=1/Va

−=1/Vb
+=0.5. Assuming that,

part from nonideal entanglement, both experiments are
erformed perfectly;27 the output of each is a Gaussian
tate with amplitude and phase quadrature variances
iven by

Vout
± = Vin

± + 1, �20�

here Vin
± are the amplitude and phase quadrature vari-

nces of the input state.9,10 Notice that the noise intro-
uced to the output state is entirely independent of the
nput state. It should therefore be concluded that both
eleportation experiments performed equally well. How-
ver, let us say that the first experiment used a coherent
nput state �Vin

±�1�=1�, while the second used a thermal
tate with Vin

±�2�=2. The output states then have respec-
ive variances of Vout

±�1�=2 and Vout
±�2�=3. Substituting these

alues directly into Eq. (3), �Vin
±�i�→V1 ,Vout

±�i�→V2�, we see
hat the experiments yield dramatically different fideli-
ies of F�1�=0.67 and F�2�=0.95, and an incorrect conclu-
ion could be drawn that experiment (2) performed much
etter than experiment (1).
If the fidelity is calculated via a transfer function ap-

roach, however, this difference is eliminated. As dis-
ussed previously, the transfer function of a teleportation
xperiment for which the entanglement and noise sources
re Gaussian can be characterized simply by the telepor-
ation gain and the variance of the introduced noise. Ex-
erimenters (1) and (2), therefore, both determine these
arameters from measurements of the coherent ampli-
udes and variances of their respective input and output
tates. In both cases the gain and noise variances will be
qual to unity as can be seen from Eq. (20); and Eq. (20)
hen directly defines the transfer function of the telepor-
ation system. To compare experiments, the experiment-
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rs choose a common reference input state, in this case a
oherent state, and determine from Eq. (20) that, if such
n input state was used in their system, the output vari-
nces would be Vout

± =2. They then arrive at the fidelity of
eleportation for this particular reference input state from
q. (3), which yields a value of F=0.67 in both cases. The
xperimenters therefore reach the correct conclusion that
heir experiments were performed equally well.

. REMARKS
n this paper we have investigated the quantum fidelity
etween Gaussian states. Investigations of this kind are
mportant, since all continuous-variable quantum infor-

ation experiments to date have been performed with
uch states. The input states in these experiments are
ormally treated as pure coherent states.8–11 However,
mall levels of mixedness are typically present. We find
hat even these levels of mixedness significantly alter the
uantum fidelity. Hence, it is typically not appropriate to
imply assume that the input states are pure. In an at-
empt to understand why quantum fidelity is so sensitive
o mixedness, and to gather some understanding of its
hysical significance between two mixed states, we con-
ider its classical counterpart, the classical fidelity be-
ween two probability distributions. Since the Wigner
unctions of Gaussian states are positive definite, one
ight expect the quantum and classical fidelities to be

dentical or at least similar. We find, however, that they
how radically different behaviors. Classical fidelity be-
ween probability distributions is degraded more strongly
han quantum fidelity between quantum states as a re-
ult of differences in squeezing parameters. On the other
and, the quantum fidelity degrades faster than the clas-
ical fidelity as the breadth ��X2�P2� of the distributions
iverge. The distance between two Gaussian states in
hase space does not cause any discrepancy between the
uantum and classical fidelities. In the limit of the ex-
reme mixedness for both Gaussian states, which can be
onsidered the classical limit, quantum fidelity ap-
roaches the classical one.
Although a clear physical significance can be attached

o quantum fidelity when one of the states involved is
ure, our results indicate that when both states are
ixed, quantum fidelity loses this significance. For this

eason, we propose the use of transfer functions to char-
cterize continuous-variable quantum information proto-
ols. Once the transfer function of the protocol is deter-
ined, the fidelity that would be achieved between an

rbitrary pure input state and the output state can be cal-
ulated. The resulting value has physical significance and
an be used as a benchmark to compare between experi-
ents.

PPENDIX A: QUANTUM FIDELITY FOR GAUSSIAN
TATES
he density matrix of a general Gaussian state can be ex-
ressed as
� = Z���D�x�S�r�exp
−
�

2
�aa† + a†a��S†�r�D†�x�,

�A1�

here S�r� is the squeezing operator, D�x� is the displace-
ent operator, and Z��� is the normalization factor.
uantum fidelity between two Gaussian states �1 and �2,

or x1=x2, is then21

Fq
�
� =

2 sinh
�1

2
sinh

�2

2

�Y − 1
, �A2�

here

Y = cos2 

cosh2�r2 − r1�cosh2
��1 + �2�

2

− sinh2�r2 − r1�cosh2
��2 − �1�

2 �
+ sin 

cosh2�r1 + r2�cosh2

��1 + �2�

2

− sinh2�r1 + r2�cosh2
��2 − �1�

2 � . �A3�

he variances V± for a Gaussian state of the general form
f Eq. (A1) are

V+ = �X2 = 1 + A + B, �A4�

V− = �P2 = 1 + A − B, �A5�

A = 2�n̄ + �2n̄ + 1�sinh2 r�, �A6�

B = 2�2n̄ + 1�cosh � sinh r cosh r, �A7�

n̄ = Tr��â†â� =
1

e� − 1
, �A8�

here n̄ corresponds to the average photon number. Then
he squeezing parameter r and inverse temperature � can
e expressed in terms of V1,2

± and 
 as

� = ln
1 +
2

�V+V− − 1� , �A9�

nd Eq. (8). Equation (12) is obtained from Eqs. (8), (A9),
A2), and (A3).

Quantum fidelity between two distant Gaussian states
1 and �2, for 
=0, was calculated by Wang et al.22 as

Fq
�x� = Fq

�
=0�D, �A10�

here
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D = exp
 �
1 + 
2�

�
� ,

� = cos �1 cosh �2

+ sinh �1 sinh �2 cosh 2�r1 − r2� − 1,


1 = sinh �1 sinh2
�2

2
��g2 + g*2�sinh 2r1

− 2�g�2 cosh 2r1�,


2 = sinh �2 sinh2
�1

2
��g2 + g*2�sinh 2r2

− 2�g�2 cosh 2r2�. �A11�

y substituting � and r in Eqs. (A10) and (A11) with Eqs.
A9) and (8), Eqs. (17) are obtained.
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