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We examine the physical significance of fidelity as a measure of similarity for Gaussian states by drawing a
comparison with its classical counterpart. We find that the relationship between these classical and quantum
fidelities is not straightforward, and in general does not seem to provide insight into the physical significance
of quantum fidelity. To avoid this ambiguity we propose that the efficacy of quantum information protocols be
characterized by determining their transfer function and then calculating the fidelity achievable for a hypo-
thetical pure reference input state. © 2007 Optical Society of America
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1. INTRODUCTION

Quantification of the similarity (or distinguishability) of
quantum states is a crucial issue in quantum information
theory.! Quantum fidelity>—previously known as Uhl-
mann’s transition probability’—is probably the most well
known such quantification technique, and is an important
tool for assessing the efficacy of quantum information
transfer.? Critical to any technique used to characterize
similarity is a robust understanding of its physical signifi-
cance. To date, although there have been efforts to impose
an operational interpretation on quantum fidelity for
mixed states® and to compare it with alternative distance
measures,®’ a strong and general physical significance
has yet to be found. When one of the states involved is
pure, it is well known that quantum fidelity is equal to
the transition probability from one state to the other. Fur-
thermore, Uhlmann’s theorem allows the quantum fidel-
ity between two arbitrary states to be translated to a fi-
delity between higher-dimensional pure states, which can
then be interpreted as a transition probability between
those higher-dimensional states.® However, the strength
of the link between these hypothetical higher-
dimensional states and the actual states under investiga-
tion is not obvious. In this paper we seek to establish the
physical significance of quantum fidelity for a particular
class of states, those of a Gaussian nature.

Gaussian states are extremely useful tools in many
quantum optics experiments. For example, several quan-
tum communication experiments have now been per-
formed using only Gaussian states 512 Typically the for-
mulas used to calculate the quantum fidelity achieved by
these experiments assume that the input states are pure
coherent states.®'? There have been many studies of
quantum fidelity as a successful criteria for quantum tele-
portation of coherent states,*1>71® and its value in this re-

0740-3224/07/020355-8/$15.00

gime is well understood. However, the unknown quantum
states supplied by a third party called “Victor” in real ex-
periments are not perfectly pure, and typically have some
small but nonnegligible level of mixedness. It is impor-
tant to understand both the effect of this mixedness on
the quantum fidelity achieved by experiments and the
significance of the resulting fidelity results, which turn
out to be markedly different from those expected for a co-
herent state even for extremely small levels of mixedness.
Hence the motivation for this paper.

Quantum fidelity is a direct extension of the fidelity be-
tween a pair of classical probability distributions, termed
here classical fidelity, which is used in statistics to char-
acterize their similarity. For Gaussian states, in particu-
lar, this relationship is interesting, since the Wigner func-
tion describing such states is nonnegative and can be
thought of, to some degree, as a classical probability dis-
tribution, which we shall discuss more rigorously in this
paper. It might then be expected that the quantum and
classical fidelities would coincide for Gaussian states, and
thus a robust physical significance could be established
for quantum fidelity. The results reported here show, how-
ever, that this is not the case.

In this paper, we compare and contrast quantum and
classical fidelities as quantum-—classical counterparts.
The explicit forms of the quantum fidelities between two
Gaussian states are obtained for various cases. We also
point out that the classical fidelity between two Gaussian
states inferred by the complementary measurements ex-
actly corresponds to the overlap between their Wigner
functions. Then, although the quantum and classical fi-
delities do coincide in the classical limit, i.e., in the limit
of the extreme mixedness, we show that no simple rela-
tionship could be established for nonmaximally mixed
Gaussian states. The mixedness, squeezing, and separa-
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tion of the Gaussian states involved each effect the dis-
crepancy between classical and quantum fidelity in en-
tirely different manners.

The unclear physical significance of quantum fidelity
between mixed states raises questions about its useful-
ness as a measure of the efficacy of quantum information
protocols. We propose a new characterization method to
avoid this issue. In this method, the transfer function of
the quantum information protocol is determined and used
to characterize the quantum fidelity achievable for an ar-
bitrary pure input state. This method has two advan-
tages: (1) it provides a standard benchmark through
which to compare different experiments; and (2) the input
state can be chosen to ensure that one of the states used
to determine the quantum fidelity is pure, yielding a
physically significant fidelity, which represents the tran-
sition probability from one state to the other.

2. MOTIVATION

As we have noted in Section 1, the unknown quantum
states used in real continuous-variable quantum telepor-
tation experiments&11 are not exactly pure states but
have some small level of mixedness. In most experiments,
the input states have been assumed pure in assessing the
efficacy of the quantum information protocols without jus-
tification (we shall further clarify and discuss this point
in Section 4). A natural question here is, how sensitive is
fidelity to small levels of mixedness? It is generally as-
sumed that the small level of mixedness involved will not
significantly change the fidelity between the input and
output states. However, as we will see here, in general
this turns out not to be the case.

Let us consider the no-entanglement fidelity limit for
unity gain quantum teleportation of coherent states. This
is generally accepted to be given by a protocol in which
Alice makes an ideal heterodyne measurement of the un-
known state, thus obtaining an estimate of its coherent
amplitude «, and then passes the measurement result to
Bob who displaces a local vacuum mode by this estimated
value.® Bob’s state then has the same average coherent
amplitude as the unknown state, but its variance is in-
creased by two units of vacuum noise. If the input state is
a pure coherent state, then the no-entanglement fidelity
is F',.=0.5. Both the fidelity of quantum teleportation and
the no-entanglement fidelity limit depend on the class of
input states used. The degradation of fidelity in no-
entanglement quantum teleportation is a result of noise
introduced to the output state during the measurement
and reconstruction processes. In the case when the input
states are pure, this noise causes a significant change to
the Wigner function describing the output state, with the
result of poor overlap, fidelity, between the input and out-
put states. However, as the input states become more and
more thermal, and hence their breadths become larger,
the noise plays a smaller role in the overlap between in-
put and output states. In the limit that the magnitude of
noise introduced is insignificant compared to the breadth
of the input state, the overlap between the input and out-
put states, and hence the no-entanglement fidelity limit,
approaches unity. Our question in this section is how
rapid this transition from 0.5 to 1 is as the input states
become thermalized.
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A general expression for the fidelity in this situation
can easily be obtained by invoking Uhlmann’s theorem.?
It states that if py=Tr{|¢a )yl and po=Tr.{|¢e)¥el},
where |) and |i») are pure two-mode states and the par-
tial traces are taken only over one of the modes, then the
fidelity of p; with respect to py is given by

FP1:P2=11/]/‘112?;{|<¢2 I ¢1>|27 (1)

where the maximization is over all pure states that have
the required reduced density operators. In our case, the
reduced density operators must be those describing the
input and output states, both of which are isotropically
mixed coherent states. Here we limit our analysis to unity
gain teleportation, in which case the average coherent
amplitudes of the input and output states are equal. We
can then choose a;=ay=0 without loss of generality, and
the input and output states then become thermal. In gen-
eral, to calculate the fidelity between input and output
states we must then maximize the fidelity over all higher-
dimensional states that have reduced density operators
describing the required thermal states. However, it is well
known that the partial trace over a two-mode squeezed
state, given by

1 (G;-1) |
|¢i>=a;|: G, } n)aln)s, @)

where G;=1 is the strength of the squeezing, results in a
thermal state.'® From symmetry it is clear that such a
choice will maximize the fidelity as required. Thus the fi-
delity between two thermal states is given by
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where V;=2G;-1 is the variance of the single-mode ther-
mal state obtained by the partial trace of the correspond-
ing two-mode squeezed state.

We are now in a position to calculate the no-
entanglement fidelity limit for teleportation of an isotro-
pically mixed coherent state. Using Eq. (3) and the fact
that the ideal heterodyne protocol discussed above adds
two units of vacuum noise to the output, we obtain

2 2
Fp.=

-] - , @
JV+D(V+3) - (V-D(V+1)

This expression is graphed as a function of the input vari-
ance V=1 in Fig. 1. Notice that we recover F,,=0.5 at V
=1, i.e., a pure coherent state, but that the fidelity is very
sensitive to small amounts of mixedness. For example, for
2% mixedness, i.e., V=1.02, a typical level of experimen-
tal purity, we have F,=0.57, a 14% increase in the clas-
sical limit. We see, therefore, that to ensure accurate fi-
delity results, it is critical that the analysis of quantum
teleportation experiments takes into account the mixed-
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Fig. 1. Fidelity limit F, for quantum teleportation without en-
tanglement against the variance V of an isotropically mixed-
state input (solid curve) and the corresponding classical fidelity
(dashed curve).

ness of the input state. Just as important as achieving an
accurate fidelity result is to understand the actual signifi-
cance of the result. One way of doing this is to consider
the analogous classical system. The comparison of quan-
tum and classical fidelities is the topic of Section 3, and
the classical fidelity [see Eq. (11)] between probability dis-
tibutions equivalent to the Wigner functions of the tele-
porter input and output states is also plotted in Fig. 1.
Notice that for low levels of mixedness the classical and
quantum fidelities are in stark constrast, but as the mix-
edness increases they asymptote to the same value.

3. COMPARISON BETWEEN QUANTUM AND
CLASSICAL FIDELITIES FOR GAUSSIAN
DISTRIBUTIONS

A. General Expressions for Fidelities of Gaussian States
Cliissical fidelity F; and quantum fidelity F,, are defined
as

2
F(Py,Py) = { J dza\'Paa)Pz(a)} , (5)
F(p1,p5) = {Tr[\\p1pai o1}, (6)

where P; and Py are probability distributions, and p; and
po are density matrices. These density matrices can be
equivalently represented as quasi-probability distribu-
tions, such as the Wigner function. The Wigner function of
a general Gaussian state is

W(a) =

2
— v eXP[— F(ar oS ¢ + a; sin ¢ — 6,)?

2
- F(ai cos ¢ — @, sin ¢ — 5i)2:| ) (7

where V*=[AX(¢)]2, V- =[AP($)]?, X(¢)=(e‘i¢d +elqh /2,
and p(¢)=—i(e‘i¢d—ei¢dT)/2. Note that the variances V*
are directly measurable values in experiments. Equation
(7) becomes a coherent state of amplitude &(=6,+i5;) when
V*=V~=1. Here the breadth of the distribution is quanti-
fied by the product V*V~. For quantum states this corre-
sponds directly to the mixedness of the state, where
V*V-=1 for a pure state and V*V~— as the mixedness
increases. The level of squeezing of a Gaussian state is de-
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termined by the squeezing parameter r:

1 0 V-
rzze In 7| (8)

We will compare two Gaussian distributions labeled by
the subscripts 1 and 2. These Gaussian distributions cor-
respond to Wigner functions for quantum fidelity and to
probability distributions for classical fidelity.

Suppose an ensemble of a Gaussian quantum state p.

One can measure X($) many times while varying the
angle ¢ to find the squeezed angle ¢. Furthermore, the ac-

cumulated measurement results for X((f)) and f’(d}) will re-
sult in the Gaussian probability distributions P(«a,) and
P(a;), where

a, = a,cos ¢+ a; sin ¢, 9)

aj = a; cos ¢ — a, sin ¢, (10)

with variances V* and V™. A classical probability distribu-
tion P(a’) for a, and a; constructed from P(a,) and P(«;)
will be identical to the Wigner function W(a) in Eq. (7),
which can also be represented by W(a') with the rotated
variable «o'. In other words, if one infers the two-
dimensional classical probability distribution from the re-
petitive complementary measurements on the ensemble
of the Gaussian quantum state p, it will be exactly the
same as the Wigner function of state p. Therefore, the
Wigner functions should be used to calculate the classical
fidelity for Gaussian states. It should be noted that other
quasi-probability distributions such as the P function or
@ function cannot be used for this purpose. Of course, this
approach cannot be generally applied to non-Gaussian
states that may have negativity in the Wigner functions.
A similar treatment can be found in a recent study,!”
where the author showed that a good estimate of the fi-
delity of a quantum process can be obtained by measuring
the outputs for only two complementary sets of input
states. In short, the Wigner function of a Gaussian state
is a good analogy of the classical probability distribution
in the phase space, and Eq. (5) with the Wigner functions
can be a reasonable measure of the classical similarity of
two Gaussian states. On the other hand, it is nontrivial to
represent quantum fidelity between mixed states in terms
of their Wigner functions. However, when one of the
states is pure, quantum fidelity in Eq. (6) can be ex-
pressed in terms of the Wigner functions as F,(p;,p2)
=7f d2aW1(a)W2(a).18720 It is interesting to note that this
formula is obviously different from classical fidelity in Eq.
(5).

Let us first consider the case where 6;= 8, i.e., the two
Gaussian distributions have the same center. If we inter-
pret the Wigner function [Eq. (7)] as a probability distri-
bution, the classical fidelity between the Gaussian distri-
butions P;(@) and Py(«) is straightforwardly obtained by
Eq. (5) as

F,=4\V;ViViVi{cos® (Vi + V3) (Vi + Vy)
+sin? (Vi + V3)(Vi + V)L, (11)

where ¢=¢y— ¢; is the angle between the Gaussian dis-
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tributions (see Fig. 2). The quantum fidelity between
Gaussian states has been studied by several authors in
previous work and some useful analytical expressions
have been found.?"2* It is possible to transform their for-
mulas into more experimentally useful forms in terms of
Vi2 and ¢. The quantum fidelity is found to be (see Ap-
pendix A)

2

F,

: (12)

VAVIVEViVy/F, + K- K

where K=(V{V;-1)(V3V;-1). For most of the cases con-
sidered in this paper, the angle ¢ is zero; in this case the
classical and quantum fidelities are

F C(QD = O) =

e —— (13)
(Vi+Vy)(Vi+Vy)

F(p=0)=2{{(ViV5+ 1)(V{Vs +1) - JK} .
(14)

Even simpler formulas result when the amplitude and
phase quadratures are symmetric (Vi=V{=V; and V;
=V,=Vy); in this case,

(15)

Fq(VbVZ) = 2{V1V2 +1
-V(Vi-1(Vi-1}, (16)
where Eqs. (16) and (3) are identical.
In general, the two states can be separated by some dis-
tance x=x,+ix;=0,—0; in phase space. This separation

can be shown to have the following straightforward effect
(see Appendix A):

Fy(x) =F(¢=0)D(x),

2x2 2x2
- . (A7)

D(x) =exp| —
() p{ VitV Vi+V,

This dependence on distance turns out to be exactly the
same as one obtains for classical fidelity,

F (x)=F.(¢=0)D(x), (18)

and we therefore consider the separation in phase space
no further here.

Fig. 2. Schematic of two arbitrary Gaussian distributions P;
and P,.

Jeong et al.

0.310

Fig. 3. Quantum (solid curves) and classical (dashed curves) fi-
delities F between two Gaussian distributions. (a) Both distribu-
tions are pure, Vi=2, V1=1/2, V§V;=1, and ¢=0. (b) One distri-
bution is pure, and the other is mixed but with the same
squeezing parameter Vi=2, V1=1/2, V}/V;=4, and ¢=0.

B. p, or p, Pure

Let us first compare F. and F, from Egs. (11) and (12)
when one of the states is pure. In this case, a simple re-
lationship can be drawn between the quantum and clas-
sical fidelities:

. - (19)
F; = . 19
e

NAD

Here, as in all following cases, when comparing classical
and quantum fidelities the properties of distribution 1 are
fixed while those of distribution 2 are varied. The quan-
tum and classical fidelities between two distributions
with V{=2, V1=1/2, V;V,=1, and ¢=0 are compared in
Fig. 3(a). For quantum fidelity, this condition corresponds
to two pure quantum states, one of which has a varying
degree of squeezing while the other has a fixed squeezing
parameter of r=-0.347. We see that classical fidelity de-
grades faster than quantum fidelity. This result can be ob-
tained straightforwardly from Eq. (19). We see that when
ViVa=1, FC=F§; remembering the bound on fidelity 0
<{F.,F,}=<1, it is clear that F <F,.

Let us now consider the quantum and classical fideli-
ties between a pure squeezed state and a mixed state with
the same squeezing parameter. Results for the param-
eters Vi=2, V1=1/2, V§/V,=4, r=-0.347, and ¢=0 are
shown in Fig. 3(b). We see that the quantum fidelity de-
grades faster than the classical fidelity as the difference
in the mixedness of the two states increases. This trend
directly contrasts with that obtained in Fig. 3(a) as the
discrepancy in the squeezing parameters of the two states
increases.
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Figure 3(b) seems to reflect the difference between
quantum and classical distributions with respect to mix-
edness. Since a classical ensemble consists simply of a
mixture of classical states each weighted by the distribu-
tion function, it is essentially entirely mixed regardless of
the breadth of the distribution. A quantum state, how-
ever, is perfectly pure if the breadth is unity (V*V-=1)
and the mixedness increases as V*V~— ., So, increasing
the breadth of the distribution has a secondary effect for
quantum states, which is not present for classical distri-
butions. It is reasonable, then, that differences in breadth
cause a greater reduction in the similarity (and hence fi-
delity) of quantum states than that of their classical coun-
terparts under the same conditions.

C. p, and p, Mixed

As we have explained in Section 2, it may not be accept-
able to simply assume that the input state is pure in real
teleportation experiments, since the quantum fidelity can
be extremely sensitive to even small amounts of mixed-
ness. For example, the quantum fidelity between a coher-
ent state of V;=1 and a thermal state of Vy=2 is F
~0.667, whereas for thermal states with V;=1.05 and
Vy=2 (V;=1.01 and V,=2) it is F=0.785 (F=0.721). If a
pure input state was assumed for the latter cases, the fi-
delity would be only F=0.667, a significant underestima-
tion.

In Fig. 4 the breadths of the distributions are four
times larger than those for the previous case (Fig. 3),
while all other conditions are the same. The same trends
as those in Fig. 3 are observed, but the differences be-
tween quantum and classical fidelities are smaller. In
other words, the discrepancy between quantum and clas-

{b)

0.3
Fig. 4. Quantum (solid curves) and classical (dashed curves) fi-
delities between Gaussian distributions. (a) Vi=4, Vi=1, ViV,
=4, and ¢=0. (b) V{=4, V{=1, V§/V;=4, and ¢=0. The breadths
of the Gaussian distributions are four times larger than those in
Fig. 3.
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Fig. 5. Quantum (solid curve) and classical (dashed curve) fi-
delities for two Gaussian distributions having the same absolute
squeezing parameter V{/V;=V;/V;=16 (Ir|=0.693), yet different
breadths ViV{=V;V;/4=1. The quantum and classical fidelities
vary differently with the relative angle.

sical fidelity is reduced as the breadth (V*V~) of the
Gaussian distributions increases. The two fidelities be-
come identical as ViVi—o and V3V, —x. Since in this
limit the quantum states can be treated as classical ob-
jects, we see that the classical limit of quantum fidelity is
classical fidelity as expected.

As a final example, let us consider the effect of rotating
one distribution in phase space. Suppose the two Gauss-
ian distributions have the same absolute squeezing pa-
rameter (V{/Vi;=V3/V;=16, |r|=0.693), but different
breadths (ViV;=V3V;/4=1), and are initially aligned (¢
=0). In this case, as was seen previously, the difference in
breadth causes the classical fidelity to be greater than the
quantum fidelity [similar to Fig. 3(b)]. However, if one be-
gins to change the relative angle ¢ between the distribu-
tions, the squeezing parameters r; and ry of the distribu-
tions become different. At a certain point, this difference
may become more dominant than the difference in
breadth [similar to Fig. 3(a)]. Thus the difference between
quantum and classical fidelities gets smaller and eventu-
ally classical fidelity becomes greater as shown in Fig. 5.

In this section, we have considered several different
manipulations of Gaussian states and shown that quan-
tum and classical fidelities respond in qualitatively differ-
ent manners to these manipulations. It is clear, therefore,
that classical fidelity cannot be used, in general, to estab-
lish a strong physical significance for quantum fidelity. As
mentioned previously, there is a clear physical signifi-
cance if one of the states involved is pure. In Section 4 we
propose a characterization technique that takes advan-
tage of this fact to establish a physical significance for the
fidelity of general quantum information protocols.

4. FIDELITY FOR QUANTUM
INFORMATION PROTOCOLS

One of the most common applications of quantum fidelity
is to measure the efficacy of quantum information
protocols.1 Typically, to characterize such protocols one
begins with an ensemble of identical known input states.
The protocol is then performed on each input state, yield-
ing an ensemble of (hopefully identical) output states.
These states can be fully characterized by performing to-
mographic measurements. The desired output state (the
output state that would be achieved if the protocol ran
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perfectly) from the protocol is typically well known. For
example, in unity gain quantum teleportation it would
simply be the input state. The fidelity between this de-
sired output state and the actual output state can then be
directly calculated and is used to judge the efficacy of the
protocol. However, we have seen that fidelity is highly
sensitive to both squeezing of and impurity in the states
being compared. Furthermore, when both states are im-
pure, it is difficult to attribute anything more than a weak
physical significance to fidelity. Since in any realistic ex-
periment all states involved (except perhaps vacuum
states) will be at least somewhat impure, the usefulness
of fidelity per se as a measure of the efficacy of quantum
information protocols is questionable. Furthermore, since
the fidelity of a quantum information protocol depends
strongly on the properties of the input state, care must be
taken when using fidelity to make comparisons between
even very similar experiments.

At this point one would be forgiven for contemplating
rejecting fidelity entirely as an efficacy measure. How-
ever, it does have one attractive feature: When at least
one of the states involved is pure, it is simply the transi-
tion probability between the two states. In other words, if
one were to make a projective measurement on the output
state, fidelity is the probability that it would collapse into
the desired output state. An alternative technique, that
we advocate here, is to characterize the transfer function
of the quantum information protocol. In general, this will
involve characterizing the function that maps the Wigner
function of the input state to that of the output state.
Given particular experimental conditions and available
input states, this can be achieved to the same particular
precision. The fidelity for any arbitrary input state can
then be calculated simply by applying the transfer func-
tion and then comparing the resulting predicted output
state to the desired output state. The fidelity for some ref-
erence input state, which can be chosen arbitrarily, can
then be calculated. Fidelity calculated in this way has the
following advantages: (1) Since a pure input state can be
chosen, the desired output state from the protocol will
also often be pure;?® the fidelity obtained then has physi-
cal significance as the transition probability between the
desired and predicted output states. (2) Since the same
reference input state can be used for all experimental
implementations of quantum information protocols, this
fidelity can be used as a benchmark to compare efficacies.

Let us consider, for example, how this process would
work for unity gain continuous-variable quantum telepor-
tation. As mentioned above, the desired output for unity
gain continuous-variable quantum teleportation is the in-
put state. However, as a result of imperfect entanglement
and technical noise sources, the actual output state will
be somewhat degraded. This effect is quantified by the
transfer function of the system (if defined by the gain of
the process, which due to experimental imperfections, it
will not be exactly unity®!®) and the additional noise
present on the output state over and above the noise
present on the input state. In general the additional noise
is non-Gaussian, and tomographic techniques are re-
quired for a full characterization; however, when Gauss-
ian entanglement is used and all other noise sources are
Gaussian, only the variance of the noise is required.g’w’z6
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This is the case for all continuous-variable teleportation
experiments to date.> ™ Once the gain and noise variance
have been determined, an arbitrary reference input state
can be chosen and the corresponding output state calcu-
lated. A sensible choice of reference input state in this
case would be a coherent state, since the classical fidelity
limit for teleportation is normally quoted for coherent
states. The fidelity between this reference coherent state
and the output state can be directly calculated and used
to compare different teleportation experiments. As we
saw in Fig. 1, if this transfer function and reference state
technique is not used to characterize teleportation experi-
ments, the fidelities quoted by different experiments will
vary significantly based on variations in the mixedness of
the input states. This variation has no bearing on the
strength of entanglement used in the experiment, or the
efficacy of the protocol. Note that in most teleportation ex-
periments to date it has simply been assumed that their
input states were pure without justification. For small
levels of mixedness, this is approximately (but not ex-
actly) equivalent to what we suggest here.

For a specific example, we compare two unity gain tele-
portation experiments, each performed in exactly the
same manner, and each with identical entanglement re-
sources. Let us say, for argument’s sake, that the en-
tanglement is generated by interfering two squeezed
beams (labeled here with subscripts a and b, respectively)
with variances V;=V,=1/V_=1/V;=0.5. Assuming that,
apart from nonideal entanglement, both experiments are
performed perfectly;?’ the output of each is a Gaussian
state with amplitude and phase quadrature variances
given by

Vou=Vin+1, (20)
where Vi, are the amplitude and phase quadrature vari-
ances of the input state.®1° Notice that the noise intro-
duced to the output state is entirely independent of the
input state. It should therefore be concluded that both
teleportation experiments performed equally well. How-
ever, let us say that the first experiment used a coherent
input state (an(l)=1), while the second used a thermal
state with Vfrf2)=2. The output states then have respec-
tive variances of V:'=2 and V*?=3. Substituting these
values directly into Eq. (3), [Vf;i)HVI,Vjﬁ?HVQ], we see
that the experiments yield dramatically different fideli-
ties of FM=0.67 and F?=0.95, and an incorrect conclu-
sion could be drawn that experiment (2) performed much
better than experiment (1).

If the fidelity is calculated via a transfer function ap-
proach, however, this difference is eliminated. As dis-
cussed previously, the transfer function of a teleportation
experiment for which the entanglement and noise sources
are Gaussian can be characterized simply by the telepor-
tation gain and the variance of the introduced noise. Ex-
perimenters (1) and (2), therefore, both determine these
parameters from measurements of the coherent ampli-
tudes and variances of their respective input and output
states. In both cases the gain and noise variances will be
equal to unity as can be seen from Eq. (20); and Eq. (20)
then directly defines the transfer function of the telepor-
tation system. To compare experiments, the experiment-
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ers choose a common reference input state, in this case a
coherent state, and determine from Eq. (20) that, if such
an input state was used in their system, the output vari-
ances would be V5., =2. They then arrive at the fidelity of
teleportation for this particular reference input state from
Eq. (3), which yields a value of F=0.67 in both cases. The
experimenters therefore reach the correct conclusion that
their experiments were performed equally well.

5. REMARKS

In this paper we have investigated the quantum fidelity
between Gaussian states. Investigations of this kind are
important, since all continuous-variable quantum infor-
mation experiments to date have been performed with
such states. The input states in these experiments are
normally treated as pure coherent states.® ! However,
small levels of mixedness are typically present. We find
that even these levels of mixedness significantly alter the
quantum fidelity. Hence, it is typically not appropriate to
simply assume that the input states are pure. In an at-
tempt to understand why quantum fidelity is so sensitive
to mixedness, and to gather some understanding of its
physical significance between two mixed states, we con-
sider its classical counterpart, the classical fidelity be-
tween two probability distributions. Since the Wigner
functions of Gaussian states are positive definite, one
might expect the quantum and classical fidelities to be
identical or at least similar. We find, however, that they
show radically different behaviors. Classical fidelity be-
tween probability distributions is degraded more strongly
than quantum fidelity between quantum states as a re-
sult of differences in squeezing parameters. On the other
hand, the quantum fidelity degrades faster than the clas-
sical fidelity as the breadth (AX2AP2) of the distributions
diverge. The distance between two Gaussian states in
phase space does not cause any discrepancy between the
quantum and classical fidelities. In the limit of the ex-
treme mixedness for both Gaussian states, which can be
considered the classical limit, quantum fidelity ap-
proaches the classical one.

Although a clear physical significance can be attached
to quantum fidelity when one of the states involved is
pure, our results indicate that when both states are
mixed, quantum fidelity loses this significance. For this
reason, we propose the use of transfer functions to char-
acterize continuous-variable quantum information proto-
cols. Once the transfer function of the protocol is deter-
mined, the fidelity that would be achieved between an
arbitrary pure input state and the output state can be cal-
culated. The resulting value has physical significance and
can be used as a benchmark to compare between experi-
ments.

APPENDIX A: QUANTUM FIDELITY FOR GAUSSIAN
STATES

The density matrix of a general Gaussian state can be ex-
pressed as
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p= Z(,B)D(x)S(r)exp|:— g(aa% + a+a):|ST(r)DT(x) s
(A1)

where S(r) is the squeezing operator, D(x) is the displace-
ment operator, and Z(B) is the normalization factor.
Quantum fidelity between two Gaussian states p; and po,
for x;=x, is then®!

B2

. B
2 sinh — sinh E

F= , (A2)

\;”Y -1
where

5 9 9 (B1+ B2)
Y = cos” ¢| cosh®(ry — r{)cosh® ————

— sinh?(ry — r1)cosh? —

(Bs - m)}

(B1+ B2)

+ sin <p|:cosh2(r1 +rg)cosh?

(B2- ﬁl)} | )

— sinh?(ry + ry)cosh? —

The variances V* for a Gaussian state of the general form
of Eq. (A1) are

V*=AX?=1+A+B, (A4)
V- =AP2=1+A-B, (A5)
A =2[7 + (27 + 1)sinh? r], (A6)

B=2(2n + 1)cosh ¢ sinh r coshr, (A7)

1
n=Trlpd'a]=——, A8
7 =Trlpa'a] = 5— (48)

where 7 corresponds to the average photon number. Then
the squeezing parameter r and inverse temperature 3 can
be expressed in terms of V7, and ¢ as

2
=In| 1+ ———, (A9)
B l \r’V+V_ -1 :|

and Eq. (8). Equation (12) is obtained from Egs. (8), (A9),
(A2), and (A3).

Quantum fidelity between two distant Gaussian states
p1 and pg, for =0, was calculated by Wang et al.? as

FY=F#D, (A10)

where
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[(61"'52)]
D=exp T .

A = cos 3; cosh B,
+ sinh B; sinh B, cosh 2(r; —rg) — 1,
. . 2 BZ 2 *2 .
€, = sinh B; sinh E[(g +g “)sinh 2r

- 2|g|? cosh 2r4],

B1 ;
€ = sinh B, sinh? E[(g2 +g ?)sinh 2r,

- 2|g|? cosh 2rs]. (A11)

By substituting 8 and r in Eqgs. (A10) and (A11) with Eqgs.
(A9) and (8), Eqs. (17) are obtained.
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